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1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)
Tetrahedron eq. [A.B. Zamolodchikov 80]
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R124R135 Ro36 Ruse = RuseRo36R135R124 on V' Rijr € End(V®V ®V)

3D reflection eq. [Isaev-Kulish 97]

Resg K3579 Ro49 Ro58 K1478 K1236 456 = Ra56 K1236 K1478 258 R249 K 3579 689

MWOVIWRVRVRVeawWeV eV Ky € EndW e VoW eV

They are compatibility conditions of the quantized Yang-Baxter eq. and quantized reflection eq.,
which are the usual Yang-Baxter and reflection equations up to conjugation.




Now that R and K play the role of structure constants, they have to satisfy the compatibility condition
under introducing one more arrow:
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Several interesting solutions are known for the tetrahedron equation
by Zamolodchikov, Baxter, Kapranov-Voevodsky, Bazhanov, Kashaev, Korepanov, Maillet,
Mangazeev, Sergeev, Stroganov, Bytsko-Volkov, K-Matsuike-Yoneyama, etc.

Only a few solutions are known for the 3D reflection equation by K-Okado, Yoneyama.

There are quantum group theoretical approaches based on unantized coordinate rings by
[Kapranov-Voevodsky 94] and PBW basis of U, by [Sergeev 08].

They are equivalent beyond type A [K-Okado-Yamada 13] and have been developed
extensively with many applications.

In the approach, the diagrams in the previous pages emerge as wiring diagrams
for the reduced expressions of the longest element of the Weyl groups As and Cs.

The aim of this talk is to develop another approach [Sun-Yagi 22|, where these diagrams are
complemented by quivers that facilitate the efficient operation of quantum cluster algebras.

We focus on the Fock-Goncharov quivers, devise a new realization of quantum Y-variables
using q-Weyl algebras, and obtain a new solution.

Theoretical and Mathematical Physics

Atsuo Kuniba

Quantum Groups in
Three-Dimensional
Integrability




2. New solution

ors Loty X Lo () 235 (4
RZ]k — \Ijq(epr*_url_pk Uk p.7+)‘1k)pjk ehpz(uk u])e h (uk uz)’

,Cijkl — \Ijqz (epj +uj+pr—u—2pr+Aji ) \Ijq (epz' +ui+pr—uk —pj+Aik )\Ijqz (epj +uj+pr—u—2pg+Aji )—1

A
X pjl e%pi(ul_uj)e_j%l(zuk—Qui-i-ul—Uj).

1
U, (X) = X ) : quantum dilogarithm
. Ty (q*U)Te(U) " =1+4U,
Key properties

U, ()Y, (W) =T, (W)U, (g ' UW)T,(U) if UW = ¢*WU (pentagon identity)

dijh  otherwise for tetrahedron eq. ) [pi; p;] = [ui, u;] = 0 : canonical variables

[pi, us] = {25”77’ i,j €13,6,9} ( [pi, us] = dizh

pi; = transposition p; <> pj, u; <> U, qg=e", Aij = Ai — Aj



3. Derivation from quantum cluster algebra

Seed = (B,Y) B <+ @ : quiver with \{ertices
= (bij)ij=1, bij = —bji € Z/2 : Exchange matrix (Type A only) gy
Y =(Y1,...,Y,), YV, =¢*¥Y;Y;: Y-variables ..
F(Y) = F(B,Y) : non-commutative fraction field generated by Y bij =1/2
P Ny

Mutation

pe(B,Y) = (B, Y ke{l,...,n}

, {_bz.j ifi=korj=k 2], = max(z, 0)

ij = bij + [bki)+bkj + [brj]+bir  otherwise

Y/ Y_l ’[, = k‘



pr on Y is decomposed into monomial part and dilog (automorphism) part
in two (4, —) ways so that the following diagram becomes commutative:

Y; e F(Y) —— F(Y) The(Y]) = qb’m'[d"i’~8]JrY;-Yk[d’“‘“]Jr (e =+ : sign)

l Tui .. dilog part

Y/ € F(Y) FY) ui,g = Ad(T,(YE)?), ie. ui,E(Yi) = U, (Y)Y, 0, (V) e
Tk,+

monomial part

Compositions of u} := Ad(¥q(YE)®) 7k, : F(Y') = F(Y) are called cluster transformations.

1 2 1 2
Example 6 —» o0 2 o =< o b1z = 1= —by1, V1Yo = ¢°YoY)
Y Y2 Y1 (14+qY, 1)1 Y, !
Mg +
To+ _ 4 V1Y3 > V(¢ Y)W (Y2) Yo = ¢ Yi(14 ¢ Y2) Y,
N\
Yy — uh Yi(14gY, 1)~!

’ 1\ — _ 1\ — _ S
To. Y > U (Y, )TN0 (Y, ) = Vil (¢?Y, )T, (Y ) 7



Wiring diagrams (red) and the Fock-Goncharov (FG) quivers (black): Type A,

FG quivers are designed in such a way that
the braid move Ri93 and
the mutation u4 are compatible.

(Y,... Y
Y! Y Yi(1+ qYa)

( 2\ . (q_1Y2Y4\ Ad(T,(Ya)) (Y2(1+qy4—1)—1\
pic Y | = | aYa | S | Ya(l YT
Y/ ) P Y,

\vz/ \ v / \ Yi(1+qY)) )

The above transformation R;23 of the wiring diagram satisfies the tetrahedron equation:

Ri24R135R236 Ras56 = Ras6R236 0135124



A2‘—>A3

Wiring diagrams (red) which are
successively transformed by
braid moves denoted by R;;

They are associated with the
FG quivers (black) which are
transformed by mutations u,

The figure shows that Ry,

satisfies the tetrahedron equation.

This 1s not so surprising.
Our upcoming main theorem is
a further step beyond it.
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Embedding into q-Weyl algebras

The g-commutativity becomes automatic in the
following parameterization using q-Weyl algebra

Introduce canonical variables:

[Pz‘auj] = hd;j, [pz’apj] = [Uz',uj] =0

etPi e*U gre generators of g-Weyl algebra

with the relation ePie%i = ¢%ie%iePi

Y]_Y2 — q2Y2Y1 Y{YZI —_— Y2,Y1, " 5
YiY; = qY3Y: YY) = ¢ 1YY/ (g=¢€", Kj=eY, Aj=A—A;)
Yy = q_2Y4Y1 Yl’Y4/ = q2Y4,Y1,
Y1Y5 = Y5Y1, etc Y/ Y5 Y5’Y1', etc Yl — ,412—161?2—%2—171 Y’ — ,{3 epa—us
Y2 — ﬁ2€p2+u2—p3 Y’ — nlepl-l-m
Ys = ky eP Y] = Ky lepraps

Yi= E1Kg16p1+u1+p3_u3_p2 Y4’ =ik ,i36p3+u;z,+p1—u1—p2

Y5 = K3eP3tus Y. = KoeP2tu2—P



Moreover, in the g-Weyl algebra, not only the dilogarithm part but also the monomial part
of the cluster transformation

%) Y
1 |2V Ad(P
Yi| & | g Y3y, is realized as an adjoint as U eh = (Pr23)
/ —1
\)Y}/) \ Y%s ) Pro3 = pag g1 (us—u2) o 7R (us—u1)
5
Example

Ad(Pr23)(€7) = pas e 7P1(ua—uz) o B2 (us—u1) gp3 o = 42 (ug—u1) o= wP1(us—u2) o

= o3 6%?1 (u3—u2) ;=23 ,P3 o~ +p1(uz—us)

P23

=003 e P1—A23 oP3 Po3 = €2 —P1—A23

Underlined parts are treated by the Baker-Campbell-Hausdorff formula



Therefore, the cluster transformation p); becomes totally an adjoint as

py = Ad(V(Yy))7s,4 = Ad(¥4(Ys))Ad(Pr2s) = Ad(Ry23)
Ri23 = \IJq(Y4)P123 — \I;q(em+U1+p3—u3—p2+>\13)p236%191 (ug—uz)e)\—%&(u;a,—ul)

= R(A1, A2, A3)123

Theorem. The tetrahedron equation with spectral parameters 1s valid:

R( A4, A5, A6)a56 R (A2, A3, A6 )236 R (A1, A3, A5)135R (A1, A2, Ag)124
= R (A1, A2, A1)124R (A1, A3, A5)135R (A2, As, A6)236 R (A4, As, A6 )as6




Wiring diagrams (red) and the FG quivers (black) for K: Type C,

FG quivers are weighted. (2= weight 2 node, Exchange matrices are only skew-symmetrizable)

()/1,” -,YG) <,U'2:u5/-t2 (Y1,7‘ - ’YGI)

< < < <
< < < <
4 7/ 7’
4 7/ < > 4
4 7 4
C’/ y ’I

> ®; :o’,
5 6 4 5 6

The transformation K ,3, of the wiring diagram induces the following cluster transformation:

11 1 = Ad(W g2 (V) W (Y)W 2 (Va) ™) 7o s,



For three reflecting wires (red), there are two ways to reverse the order of reflections: Cg — C 3

Kisse | 26,2 Kygso [ H2,10,2 _ Kyeso | H373 K356 | H363

Rz T K10

The corresponding transformations K and R satisfy the 3D reflection equation:

R457 K4689 K2379 R258 Rl 78 K1356 R124 = R124 K1356 Rl 78 R258 K2379 K4689 R457 ‘



The cluster transformation induced by K,,3,

Y7\
Y
Y/ T2 T T
* ok ok 3 y+ 15,472,
Halista ¢ | 51 —
4
Yy

7y

(

q2y—1y—1
\q‘liayﬁ3%/

)

Ao=1+(qg+ q?’)Ys + q4Y52(1 + q2Yz),

Ad(T 2 (Y2)Tq(Y5) ¥ 12(Y2) ")
—

Al =1 + qY5(]. -+ q2Y2),

(

ATTASYY,

AF1Y5A A,
q_lAﬁlyly%Aa
q2Y5_1Y2_1A0
\g AT Y2 Y5Ys )

YiAo \

Ay =1+ ¢*Y5(1 + ¢*Y2)

An embedding of Y-variables into q-Weyl algebras (p; and u; obey the canonical commutation relation)

-1 —ug—2
Yl — ,{}2 ep2 2 pl7
}/2 H 52H216P2+U2+p4_u4_2p37

+u
Yé|_)/{l46p4 47

—1 —u »
Y, — Kq eP1 1
}/5 — ,{’1,{5161)1+U1+p3—U3—p27

+tuz—
Y6 |_> K‘;3 ep3 3 p47

Yll — Rzlem—w’

Y’2’ — ,{4,€2_16p4+u4+p2—u2—2p3’
Yg — Ko 6102-!-1&2—21017

YZ — HglePB—US—IM,

Yg — 53,%1‘161)3+U3+p1—U1—P2’

Y{ — kyePrtu,



Under this embedding, the cluster transformation for K,;, becomes totally an adjoint as

popispty = Ad(K1234)

Ki234 = K(A1, A2, A3, Aa)1234

_ P2tuz+pa—us—2p3+Aag P1+ui1+p3—uz—pa2+Ais P2t+us+ps—us—2p3+Aaa)—1
= ‘Ifqz(e )\If (6 )\I/qz(e )

q

X p24 e%pl (U4—uQ)e%Zﬁ4(2U3—2u1+U4—uQ)

Theorem. The 3D reflection equation with spectral parameters 1s valid:

Ra57K4680K 2379 R 258 R178K1356 R 124 = R124K 1356 R178 R 258K 2379 K 4689 R 457

where R;jx = R(Ais Aj, Ak )ijr and Kijrr = K(Aiy Ajy Aky Atk




4. Tetrahedron equality as duality
A representation of the g-Weyl algebra ePie¥i = g2%ie%iePi on D, .y maez? Clmy,ma, m3)

ep’b 2’m,7,

m2)m3>

m2am3> = q

ml,mz,m3> - |m1?m27m3>|mz‘—>mi—la el

k—i q(b—k)(i—k—l-l)

. b—k
Matrix elements : a,b,c,_ 2\ sa+tb b—{—c( fil) ( K2 )
R ik = {a b cRuzsli, j k) = 327675 K3 K3 (4% ¢%)v—k

Substitution of this into the tetrahedron equality

Z Ry bybs (M1, A2, M) ROVS3 (A1, Mgy As) Re2ene (Mg, As, Ag) Rot2o28 (A4, As, Ae)

c1,b3,b5 c2,¢3,be C4,C5,C6
..... beEZ
asq,as, ae az,a3,be a1,b3,bs b1,b2,b4
Z Rb4 bs,bs )\4’ )‘57 )‘6)Rb2,b3,ca (>‘2? )‘37 )‘G)Rb1,03,65 ()‘17 )‘37 >‘5)R01,62,c4 ()‘17 >‘2a )‘4)1
..... bgEZ

nqn(n—l— 1+2s) 1

1 (—1) B
(4%) s+ nz: (@*)n(@%)t-n(q%)ntr B (@2)r+4 Z (0%)sl % )e—nl0%)ses

nez




5. Outlook

A similar duality is present also in the modular double setting,
where the matrix elements involve non-compact quantum dilogarithm (NCQD).

( )_ 1/ e—Zizw dw b2
A ARG AV sinh(wb) sinh(w/b) w 9=¢€

The duality in that case emerges as an identity of integrals, which is also reproduced by
a NCQD analogue of a classical Heine transformation.

Future problems:
Possible connections with the duality in 3D supersymmetric gauge theories
Exploring insights into 3D consistency
Butterfly quiver
Reductions to 2D, ¢~ =1, ¢ — 0, etc.
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